Effects of Adenophostin-A and Inositol-1,4,5-trisphosphate on Cl⁻ Currents in *Xenopus laevis* Oocytes

H. CRISS HARTZELL, KHALED MACHACA, and YOSHIYUKI HIRAYAMA

Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030 Received October 23, 1996; Accepted December 20, 1996

SUMMARY

Adenophostin-A, a novel compound isolated from cultures of *Penicillium brevicompactum*, has been shown to stimulate Ca^{2+} release from inositol-1,4,5-trisphosphate (IP_3)-sensitive Ca^{2+} stores in microsomal preparations, permeabilized cells, and lipid vesicles containing purified IP_3 receptor. The purpose of the current study was to compare the effects of adenophostin-A and IP_3 on Ca^{2+} release from stores and Ca^{2+} influx in intact *Xenopus laevis* oocytes. Ca^{2+} influx though store-operated Ca^{2+} channels and Ca^{2+} release from stores were monitored by measuring two Ca^{2+} -activated CI^- currents that can be used as real-time indicators of Ca^{2+} release and Ca^{2+} influx (I_{CI-1} and I_{CI-2} , respectively). We find that high concentrations

(final intraoocyte concentrations of 5–10 μ M) of adenophostin-A and IP $_3$ stimulate a large Ca $^{2+}$ release from stores (as measured by I $_{\text{Cl-1}}$) followed by Ca $^{2+}$ influx (as measured by I $_{\text{Cl-2}}$). Low concentrations (\sim 50 nM) of IP $_3$ stimulate oscillations in Ca $^{2+}$ release without stimulating Ca $^{2+}$ influx. In contrast, low concentrations of adenophostin-A can stimulate Ca $^{2+}$ influx without stimulating a large Ca $^{2+}$ release. However, Ca $^{2+}$ influx did not occur in the complete absence of Ca $^{2+}$ release. Therefore, it is unlikely that adenophostin-A directly stimulates storeoperated Ca $^{2+}$ channels. We hypothesize that adenophostin-A releases Ca $^{2+}$ from a subpopulation of stores that is tightly coupled to store-operated Ca $^{2+}$ channels.

The concentration of cytosolic free Ca^{2^+} regulates many physiological processes as diverse as fertilization and programmed cell death. One of the key pathways that controls the level of cytosolic free Ca^{2^+} involves G protein-coupled and tyrosine kinase-coupled receptor stimulation of phospholipase C, production of IP_3 , and the release of Ca^{2^+} from internal stores (1–4). Release of Ca^{2^+} from internal stores is often followed by a sustained influx of extracellular Ca^{2^+} (5–8). This influx [capacitative Ca^{2^+} entry (9)] is mediated by SOCCs in the plasmalemma that are apparently controlled by the level of Ca^{2^+} in the internal store.

Although IP $_3$ is a very potent stimulator of Ca $^{2+}$ release from internal stores (ED $_{50}\sim 200$ nm), it has recently been reported that a structurally different compound, adenophostin-A, is $\sim \! 100$ -fold more potent than IP $_3$ in releasing Ca $^{2+}$ from internal stores (10). Adenophostin-A, isolated from the broth of cultures of *Penicillium brevicompactum*, is 2'-AMP linked through its 3'-hydroxyl to glucose-3,4-diphosphate. It has been proposed that the 3- and 4-phosphates on the glucose ring of adenophostin-A assume the same role as the 4- and 5-phosphates in IP $_3$ (10). Consistent with this idea is the finding that 2-hydroxyethyl- α -D-glucopyranoside-2,3',4'-

trisphosphate is also capable of binding to the IP_3 receptor and releasing Ca^{2+} from internal stores, although with ~ 1000 -fold lower potency than adenophostin-A (11). Although the effects of adenophostin-A on Ca^{2+} release have been demonstrated in microsomal preparations (10), permeabilized cells (10), and purified reconstituted IP_3 receptors (12), the effects of adenophostin-A in intact cells have not been investigated. In the current study, we examined the effects of adenophostin-A injected into *Xenopus laevis* oocytes and compared its effects with those of IP_3 .

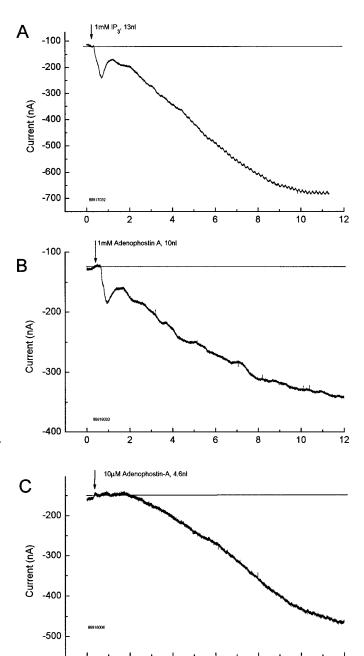
 $X.\ laevis$ oocytes are a very useful model system for studying Ca²+ signaling, in part because they express Ca²+-activated Cl⁻ channels that can be used as real-time indicators of cytosolic Ca²+ concentration (13) and in part because their large size facilitates the study of spatial and temporal changes in cytosolic Ca²+ concentrations (14). We have recently described two distinct Ca²+-activated Cl⁻ currents in $X.\ laevis$ oocytes whose activation depends on the source of Ca²+: $I_{\text{Cl-2}}$ is activated only by Ca²+ influx through SOCCs, and $I_{\text{Cl-1}}$ can be activated both by Ca²+ influx and by Ca²+ release from internal stores, depending on the voltage protocol used (15). The purpose of the current study was to use these two currents to compare the effects of intracellular injection of IP_3 and adenophostin-A on Ca²+ release from

ABBREVIATIONS: IP₃, inositol-1,4,5-trisphosphate; SOCC, store-operated Ca²⁺ channel; EGTA, ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; [adenophostin-A]_{CALC}; calculated adenophostin-A concentration; I_{Cl-1} and I_{Cl-2}, Ca²⁺-activated Cl⁻ currents.

This work was supported by National Institutes of Health Grants HL54074 and GM55276.

internal stores and the subsequent capacitative Ca²⁺ influx through SOCCs.

Materials and Methods


Electrophysiological methods. *X. laevis* oocytes (stage V–VI) were isolated according to the method of Dascal (13) and voltage-clamped with two microelectrodes filled with 3 $\,$ M KCl (1–2 M Ω) as described previously (15). Typically, the membrane was held at -35 mV, and voltage steps were applied as described in the text. Stimulation and data acquisition were controlled by pCLAMP 6.01 (Axon Instruments, Burlingame, CA) via a Digidata 1200 A/D-D/A converter (Axon Instruments) and a Gateway P5–90 computer (Intel Pentium, 90 MHz). During recording, the oocyte was superfused with normal Ringer's solution at a rate of 2 ml/min (\sim 300- μ l chamber). Experiments were performed at room temperature (22–26°).

Microinjection. Oocytes were injected with IP $_3$ or adenophostin-A using a Drummond Nanoject Automatic Oocyte Injector (Broomall, PA). The injection pipette was pulled from glass capillary tubing in a manner similar to the recording electrodes and then broken so that it had a beveled tip with an inside diameter of 10–20 μ m. The final concentrations ([X]calc) of injected solutions in the oocyte were calculated assuming an oocyte volume of 1 μ l and uniform distribution of the solute in the oocyte. The figures show the pipette concentrations and volumes of solutions injected.

Solutions. Normal Ringer's solution consisted of 123 mm NaCl, 2.5 mm KCl, 1.8 mm CaCl₂, 1.8 mm MgCl₂, and 10 mm HEPES, pH 7.4. Zero-Ca²⁺ Ringer's was the same except CaCl₂ was omitted, MgCl₂ was increased to 5 mm, and 0.1 mm EGTA was added. Stock solutions of IP₃ and adenophostin-A were made at 10 mm in H₂O, stored at -20° , and diluted in water to the final concentrations indicated for injection. In all cases, injection of the same volume of water had no effect on the Cl⁻ currents. Adenophostin-A was the generous gift of Drs. M. Takahashi, S. Takahashi, and K. Tanzawa (Sankyo Co., Ltd., Tokyo, Japan).

Results

Effects of IP₃ and adenophostin-A at a constant membrane potential of -100 mV. Initially, we examined the effects of IP₃ and adenophostin-A on the membrane current recorded at a constant holding potential of -100 mV (Fig. 1). When 13 nl of a 1 mm solution of IP3 was injected into an X. laevis oocyte, an inward current developed. The current was biphasic: the initial component peaked in ~30 sec and was followed by a slowly developing current that took ~ 10 min to develop fully (Fig. 1A). A similar result was obtained when the oocyte was injected with 10 nl of a 1 mm solution of adenophostin-A (Fig. 1B). These concentrations of drug produced calculated drug concentrations in the oocyte of 5-13 μ M (assuming an oocyte volume of 1 μ l), which would be expected to be supramaximal for stimulating Ca²⁺ release from IP₃-sensitive stores (4, 10). In contrast, when the oocyte was injected with 200-fold less adenophostin-A (intraoocyte concentration ~50 nm), the transient phase was not detectable and only the slow phase was present (Fig. 1C). The slow phase of the currents evoked by IP₃ or adenophostin-A were abolished by removal of extracellular Ca²⁺ (not shown). This confirms the results of other studies (15-20) that have shown that the transient phase of the inward current produced by IP₃ injection corresponds to a Cl⁻ current that is activated by Ca²⁺ released from internal stores and the slowly developing phase is a Cl⁻ current that requires Ca²⁺ influx from the extracellular space. The data of Fig. 1C, therefore, suggest that low concentrations of adenophostin-A might stimulate

Fig. 1. Effects of injection of IP $_3$ and adenophostin in *X. laevis* oocytes at -100 mV. Oocytes were held at -100 mV and (A) 13 nl of 1 mM IP $_3$ (calculated IP $_3$ concentration = 13 μ M), (B) 10 nl of 1 mM adenophostin-A ([adenophostin-A]_{CALC} = 10 μ M), or (C) 4.6 nl of 10 μ M adenophostin-A ([adenophostin-A]_{CALC} = 46 nM) was injected at the time indicated (*arrows*).

Time (min)

10

 Ca^{2+} influx without first causing a substantial release of Ca^{2+} from internal stores.

Although the voltage protocol used in Fig. 1 has been a standard approach for investigating Ca $^{2+}$ release and influx in *X. laevis* oocytes, it is not very sensitive for detecting Ca $^{2+}$ release from stores because the transient current (I $_{\rm Cl-1}$) that is stimulated by Ca $^{2+}$ released from stores is not significantly activated at negative potentials (15). At -100 mV, I $_{\rm Cl-1}$ is a rather insensitive indicator of Ca $^{2+}$ release from stores (15).

Effects of IP_3 on $I_{\mathrm{Cl-1}}$ and $I_{\mathrm{Cl-2.}}$ To examine this possibility more closely, we compared the effects of IP3 and adenophostin-A on I_{Cl-1} and I_{Cl-2} as we have previously described (15). Fig. 2 shows the effect of injection of large concentrations of IP3 into an oocyte. The potential of the oocyte was repetitively stepped from a holding potential of -35 mV to +40 mV for 1 sec and then to -120 mV for 1 sec. The current at the end of the +40 mV pulse was taken as a measure of I_{Cl-1} , and the current at the end of the -120 mVpulse was taken as a measure of $I_{\text{Cl-2}}$. We have previously shown that under these conditions, I_{Cl-1} is an indicator of Ca²⁺ released from stores and I_{Cl-2} is an indicator of Ca²⁺ influx (15). Injection of 4.6 nl of 10 mm IP₃ into an oocyte caused an immediate but transient increase in I_{Cl-1} (Fig. 2, A and B). This increase peaked in ∼1 min and declined back to base-line in \sim 2 min. As $I_{\text{Cl-1}}$ at +40 mV declined, $I_{\text{Cl-2}}$ at -120 mV began to increase and reached a maximum in ~ 10 min. The time courses of I_{Cl-1} and I_{Cl-2} paralleled the time courses of the transient and slow phases, respectively, of the current recorded in Fig. 1. A qualitatively similar result was

obtained when a 100-fold lower amount of ${\rm IP_3}$ was injected (Fig. 2, C and D).

In contrast, when very low concentrations of IP3 were injected into the oocyte, a different result was obtained (Fig. 3). In the experiment illustrated, the oocyte was injected three times with 10 μ M IP₃. The first injection of 10 nl of 10 μ M IP₃ produced a small I_{Cl-1} and no I_{Cl-2}. The second injection of the same amount produced a somewhat larger I_{Cl-1} that oscillated in amplitude for several minutes before it declined to base-line. No $I_{\rm Cl-2}$ was detected. The third injection of 23 nl produced an even larger I_{Cl-1}. I_{Cl-1} reached a maximum after ~4 min but then began to oscillate and declined to base-line after ~8 min. In response to this injection, $I_{\rm Cl\text{--}2}$ was stimulated. $I_{\rm Cl\text{--}2}$ began to develop $\sim\!1$ min after I_{Cl-1} began to increase and reached a peak and declined to zero with approximately the same time course as $I_{\text{Cl-1}}$. The decline of I_{Cl-2} coincided with the onset of I_{Cl-1} oscillation. The observation that the amplitudes of I_{Cl-1} and I_{Cl-2} were not linearly related suggested that release of Ca²⁺ from internal stores needed to reach a threshold level before Ca²⁺

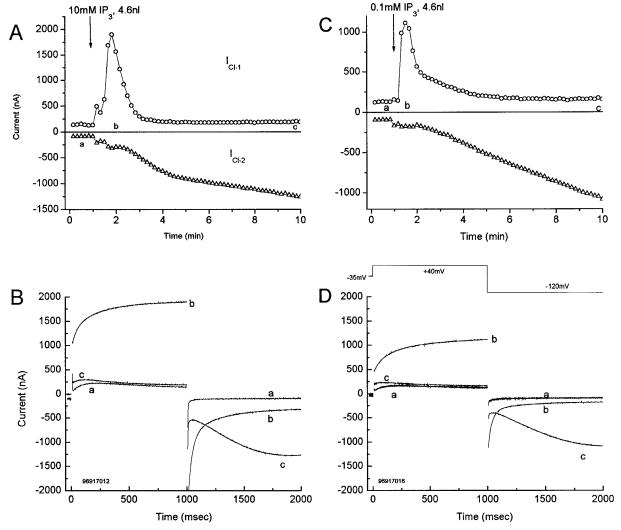
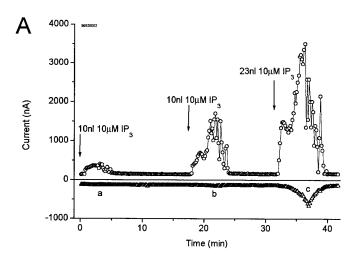
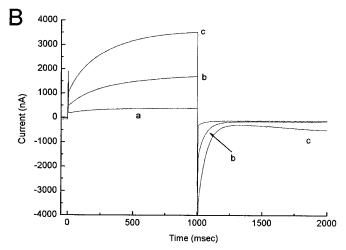
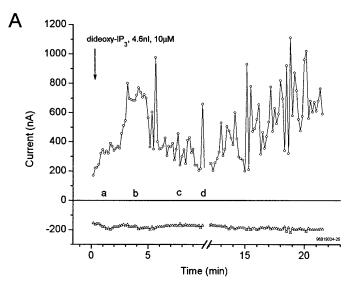




Fig. 2. Effects of high concentrations of IP $_3$ on two CI $^-$ currents. Oocytes were voltage-clamped and repeatedly stepped from -35 mV to +40 mV for 1 sec and then to -120 mV for 1 sec (D, *top trace*). The current at the end of the +40-mV pulse was taken as I_{CI-1}, and the current at the end of the -120-mV pulse was taken as I_{CI-2}. A and C, Plot of the change in (\bigcirc) I_{CI-1} and (\triangle) I_{CI-2} in response to (A) 4.6 nl of 1 mM IP $_3$ (calculated IP $_3$ concentration $=4.6~\mu$ M) or (C) 4.6 nl of 0.1 mM IP $_3$ (calculated IP $_3$ concentration =460~nM). B and D, Selected traces corresponding to the plots in A and C, respectively. a-c, Times in A-C at which the traces were selected.



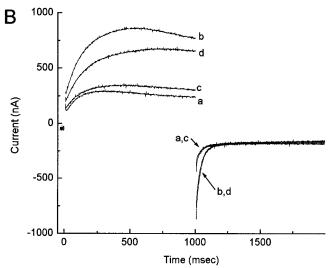
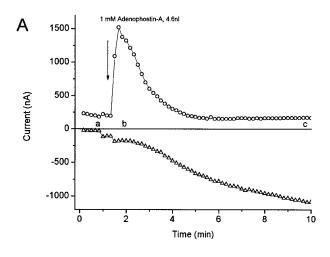
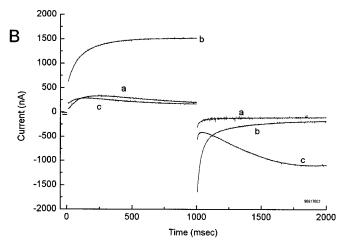


Fig. 3. Effects of low concentrations of IP $_3$ on CI $^-$ currents measured as described in legend to Fig. 2. A, Plot of (\bigcirc) I $_{\text{CI-1}}$ and (\triangle) I $_{\text{CI-2}}$ as a function of time. IP $_3$ (10 μM in the pipette) was injected at the three times indicated (*arrows*). B, *Traces* (a-c) corresponding to the times indicated in A

influx was stimulated (21). The first two injections of IP_3 failed to release sufficient Ca^{2^+} from the store to activate influx, whereas the last injection produced sufficient release to stimulate influx. We believe that the influx was transient because release was terminated as the injected IP_3 was metabolically inactivated and the stores were refilled by Ca^{2^+} influx. The length of time $I_{\rm Cl-2}$ remained elevated correlated with the dose of IP_3 injected. With large injections of IP_3 (50 $\mu\rm M$ intraoocyte concentration), as in Fig. 2A, Ca^{2^+} influx usually remained elevated for >1 hr, but with lower concentrations (0.5 $\mu\rm M$) as in Fig. 2B, $I_{\rm Cl-2}$ declined to base-line in $\sim\!\!30$ min.

In an attempt to simplify the interpretation of these experiments, we repeated them using the metabolically stable derivatives of IP_3 , 2,3-dideoxy IP_3 and 2-deoxy-3-fluoro IP_3 (21). Injection of high concentrations of these analogs (4.6 nl of a 1 mm solution) had the same effect as injections of similarly high concentrations of native IP_3 (as in Fig. 2, but not shown). However, injection of 4.6 nl of 10 $\mu\mathrm{M}$ 2,3-dideoxy- IP_3 invariably produced an increase in $\mathrm{I}_{\mathrm{Cl-1}}$ that then oscillated in amplitude for >20 min (Fig. 4). Under these conditions, when $\mathrm{I}_{\mathrm{Cl-1}}$ was oscillating, $\mathrm{I}_{\mathrm{Cl-2}}$ was usually not


Downloaded from molpharm.aspetjournals.org by guest on December 1, 2012


Fig. 4. Effects of low concentration of 2,3-dideoxy-IP $_3$ on CI $^-$ currents. A, Plot of (\bigcirc) I $_{\text{CI-1}}$ and (\triangle) I $_{\text{CI-2}}$ as a function of time. Dideoxy-IP $_3$ (4.6 nl, 10 μ M) was injected at the time indicated (*arrow*) (calculated dideoxy-IP $_3$ concentration = 46 nM). B, *Traces* (a–c) corresponding to the times indicated in A.

activated or was activated only transiently. Presumably, when $I_{\mathrm{Cl}\text{--}1}$ was oscillating, the level of Ca^{2^+} in the stores did not reach a sufficiently low level for a sufficiently long time to initiate the signal required to activate Ca^{2^+} influx.

Effects of adenophostin-A on $I_{\rm Cl-1}$ and $I_{\rm Cl-2}$. Injection of high concentrations of adenophostin-A produced a similar response to that seen with injection of high concentrations of IP_3 (Fig. 5). It seemed that $I_{\rm Cl-1}$ declined more slowly in response to adenophostin-A than in response to IP_3 (compare Figs. 2 and 5), but this was not analyzed quantitatively. In contrast, injection of a low concentration of adenophostin-A produced a different response than injection of a low concentration of IP_3 (Fig. 6). Fig. 6 shows an example typical of $>\!50$ oocytes, in which the injection of 4.6 nl of a 1 $\mu\rm M$ solution of adenophostin-A stimulated $I_{\rm Cl-1}$ only a little, whereas $I_{\rm Cl-2}$ was strongly stimulated. Compare this result (Fig. 6) with that shown in Fig. 3, in which IP_3 stimulated a larger $I_{\rm Cl-1}$ but no $I_{\rm Cl-2}$.

To verify that the currents stimulated by adenophostin-A



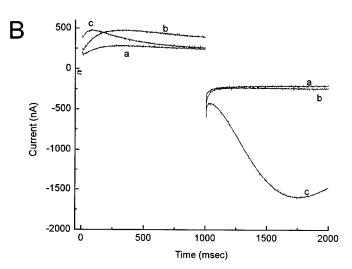


Fig. 5. Effect of a high concentration of adenophostin-A on Cl $^-$ currents. A, Plot of (O) I $_{\text{Cl-1}}$ and (\triangle) I $_{\text{Cl-2}}$ as a function of time. Adenophostin-A (4.6 nl of 1 mm) was injected at the time indicated (*arrow*) ([adenophostin-A] $_{\text{CALC}}=4.6~\mu\text{M}$). B, *Traces* (a–c) corresponding to the times indicated in A.

had the same properties as those stimulated by IP3, we characterized the adenophostin-A evoked currents in more detail. In Fig. 7, we tested the dependence of I_{Cl-1} and I_{Cl-2} on extracellular Ca^{2+} . In Fig. 7A,10 nl of 100 $\mu\mathrm{M}$ adenophostin was injected at 40 sec. At ${\sim}30$ sec after $I_{\text{Cl-1}}$ became maximus mally stimulated, we switched to zero-Ca2+ Ringer's solution. Removal of extracellular Ca2+ had little effect on I_{Cl-1}, but I_{Cl-2} did not develop until Ca²⁺ was added back to the extracellular solution at ~ 9 min. This shows that I_{Cl-1} is not dependent on Ca2+ influx, whereas ICl-2 is dependent on Ca²⁺ influx. This confirms that the currents stimulated by adenophostin-A have the same dependence on store-released Ca²⁺ and influxed Ca²⁺ as the currents stimulated by IP₃ (15). Furthermore, the adenophostin-A-stimulated currents have the same voltage-dependent activation and currentvoltage relationships as the IP3-stimulated currents (data not shown).

To compare the responses to adenophostin-A and IP_3 quantitatively, we measured the maximal amplitude of $I_{\rm Cl-1}$ and the amplitude of $I_{\rm Cl-2}$ 10 min after injection of adenophostin-A or 2,3-dideoxy IP_3 . For these experiments, we wanted to compare concentrations of adenophostin-A and 2,3-dideoxy IP_3 that produced the minimal possible stimulation of $I_{\rm Cl-1}$.

Fig. 6. Effect of a low concentration of adenophostin-A on Cl $^-$ currents. A, Plot of (O) I $_{\text{Cl-1}}$ and (\triangle) I $_{\text{Cl-2}}$ as a function of time. Adenophostin-A (4.6 nl of 1 μ M) was injected at the time indicated (arrow) ([adenophostin-A] $_{\text{CALC}}=4.6$ nM). Recording was interrupted between 10 and 14 min while other voltage protocols were being run. B, *Traces* (a–c) corresponding to the times indicated in A.

We determined that the minimal [adenophostin-A]_{CALC} required to produce an effect on I_{Cl-2} varied from oocyte to oocyte but was ~ 5 nm. The minimal calculated dideoxy-IP $_3$ concentration required to produce a response was ~ 25 nm. To compare the effects of low concentrations of these drugs, we began by injecting 5-10 nl of a 0.5-2 µM solution of adenophostin-A or 5–10 nl of a 1–10 μ M solution of 2,3-dideoxy IP₃. If the first injection did not produce a response in 2 min, a second injection was given and the final concentration of drug was calculated as the sum of the two injections. For the data shown in Fig. 8, the average calculated intraoocyte concentration of 2,3-dideoxy IP_3 was 60 \pm 20 nm, and the average adenophostin-A concentration was 18 ± 4 nm. The principal difference between the responses to adenophostin-A and IP3 was that adenophostin-A was much less effective than IP_3 in stimulating $\mathrm{I}_{\mathrm{Cl-1}}$ but was more effective than IP_3 in stimulating I_{Cl-2} . Adenophostin-A produced a \sim 4-fold smaller I_{Cl-1} (237 \pm 39 nA, 25 cells, for adenophostin-A;

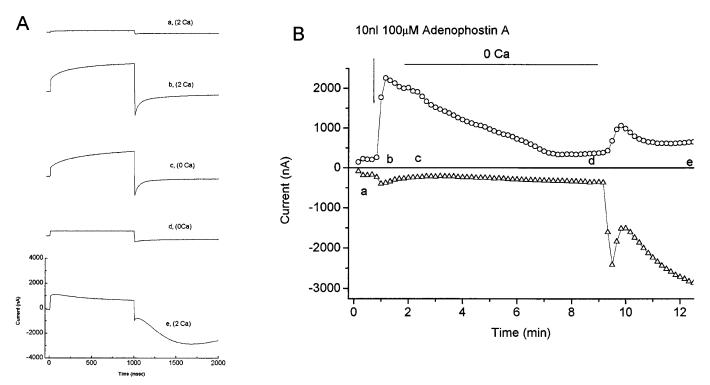
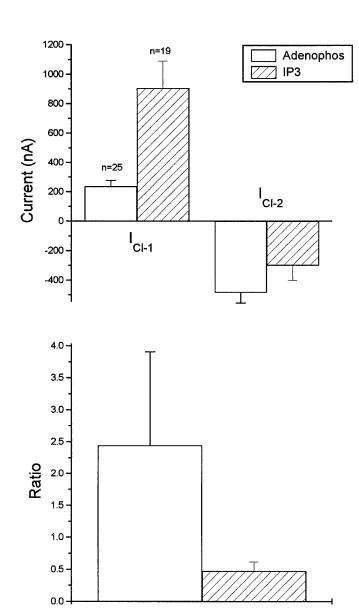


Fig. 7. Effect of zero external Ca^{2+} on currents evoked by adenophostin-A. A, *Traces* (a–e) corresponding to the times indicated in B. B, Plot of \bigcirc I_{Cl-1} and (\triangle) I_{Cl-2} as a function of time. Adenophostin-A (10 nl of 100 μ M) was injected at the time indicated (arrow) ([adenophostin-A]_{CALC} = 1 μ M). The solution was normal Ringer's except for the period during which the solution was switched to zero- Ca^{2+} Ringer's (0 *Ca*) (see Methods).


904 \pm 184 nA, 19 cells, for 2,3-dideoxy IP_3),but stimulated $I_{\rm Cl-2}$ to a greater extent (-483 ± 71 nA for adenophostin-A; -298 ± 101 nA for 2,3-dideoxy IP_3). Thus, the ratio of $I_{\rm Cl-2}$ to $I_{\rm Cl-1}$ was 5-fold greater for adenophostin-A than for IP_3 (Fig. 8B)

These results, and those of Fig. 1, suggest that adenophostin-A is capable of stimulating Ca²⁺ influx without depleting the Ca²⁺ stores to the same extent as IP₃. Indeed, Fig. 1 might suggest that Ca2+ release from stores is not at all necessary to stimulate Ca2+ influx, but as we pointed out, the voltage protocol used in Fig. 1 was very insensitive for measuring I_{Cl-1}. Using the more sensitive protocol of Fig. 8, we have never seen development of I_{Cl-2} without some stimulation of I_{Cl-1} . Injection of 5–10 nl of 0.5–1 μ M adenophostin-A either had no effect on $I_{\text{Cl-1}}$ or $I_{\text{Cl-2}}$ or produced an increase in I_{Cl-2} that was preceded by an increase in I_{Cl-1}, albeit sometimes the increase was very small (for example, Fig. 9B). These concentrations of adenophostin-A are in the range of concentrations that are effective in releasing Ca²⁺ via IP₃ receptors (10, 12). In the range below 1 nm, adenophostin-A had no discernible effect on the Ca²⁺-activated Cl⁻ currents. We wondered whether the stimulation of $I_{\operatorname{Cl-1}}$ by low concentrations of adenophostin might be explained by the higher concentration of adenophostin near the tip of the injection pipette on injection. To test this possibility, we injected larger volumes (≤46 nl) of lower pipette concentration adenophostin solutions (≤50 nm). Although in a few of these injections increases in I_{Cl-1} were not detectable at +40 mV, they were detectable at +80 mV. Furthermore, under these conditions, the development of $I_{\text{Cl-2}}$ was extremely slow: it often took >2 hr for I_{Cl-2} to develop fully. This observation suggested that at low [adenophostin-A]_{CALC}, release of Ca²⁺ from stores was very slow but was eventually sufficient to trigger Ca²⁺ influx.

This conclusion has recently been supported by confocal imaging of $\text{Ca}^{2+}\text{-green-1}$ fluorescence. On injection of 9.2 nl of 0.2 μM adenophostin-A, we observed release of Ca^{2+} from stores. Obviously, this does not prove that Ca^{2+} must be released from stores for $I_{\text{Cl-2}}$ to be stimulated, but we have so far been unable to dissociate the two processes.

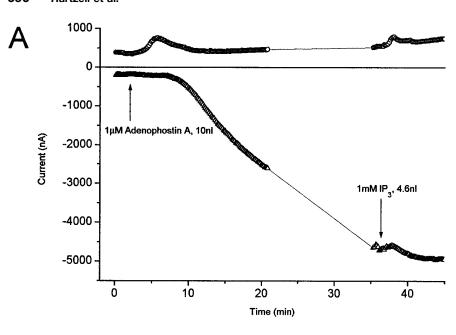
Effect of IP3 after adenophostin-A. To determine whether adenophostin-A could stimulate influx without depleting Ca²⁺ stores, we investigated whether Ca²⁺ could be released from stores by IP_3 after I_{Cl-2} had developed fully in response to a previous adenophostin-A injection. In Fig. 9A, injection of 10 nl of 1 μ M adenophostin produced a ~400 nA I_{Cl-1} and a ~4500 nA I_{Cl-2} , which developed over ~35 min. After $I_{\text{Cl-2}}$ had plateaued, 4.6 nl of 1 mm IP_3 was injected. This produced only a very small increase in I_{Cl-1} and I_{Cl-2} . These results suggested that adenophostin-A under these conditions had either emptied the IP₃-sensitive stores or had somehow inactivated the IP₃ receptor. In other cells, however, a different result was obtained, as shown in Fig. 9B. In this experiment, a slightly smaller amount of adenophostin (4.6 nl of 0.5 μ M adenophostin) produced a ~10-fold smaller increase in I_{Cl-1} (~70 nA, inset) and a smaller I_{Cl-2} (~1000 nA). After I_{Cl-2} had plateaued, 10 nl of 1 mm IP_3 was injected. In this cell, the IP3 injection produced a large ICI-1 and rapidly stimulated I_{Cl-2} . Thus, in this cell, the IP_3 -sensitive stores were clearly not completely depleted of Ca, even though a large $I_{\text{Cl-2}}$ current was present in response to adenophostin-A injection. Similar results were obtained in seven other cells injected with adenophostin to give $\sim 5-25$ nm calculated final concentration. In contrast, after a first

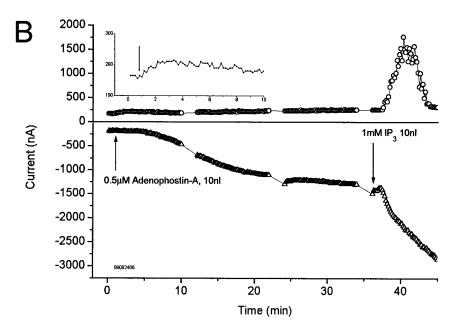
¹ K. Machaca and H. C. Hartzell. Manuscript in preparation.

Fig. 8. Summary of the effect of low concentrations of 2,3-dideoxy IP₃ and adenophostin on Cl $^-$ currents. A, The maximal amplitude of I_{Cl-1} and the amplitude of I_{Cl-2} at 10 min after injection of drug were measured. *Error bars*, standard errors. B, The ratio of I_{Cl-2} at 10 min to the maximal I_{Cl-1} observed in that oocyte was calculated for each individual oocyte in A.

injection of IP_3 activated $I_{\rm Cl-2},$ a second injection of IP_3 never evoked $I_{\rm Cl-1}$ as long as $I_{\rm Cl-2}$ was present.

Discussion


These experiments demonstrate a difference in the ability of adenophostin-A and IP_3 to activate two Cl^- currents in X. laevis oocytes. We have previously shown that one of these Cl^- currents $(\mathrm{I}_{\mathrm{Cl}-1})$ is activated by Ca^{2+} released from internal stores because it is absent unless the oocyte is injected with IP_3 and that its activation on stepping from $-35~\mathrm{mV}$ to positive potentials is independent of extracellular Ca^{2+} but is blocked by intracellular 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (15). The other current ($\mathrm{I}_{\mathrm{Cl}-2}$) is activated by Ca^{2+} influx and is abolished by removal of extracellular Ca^{2+} (15). These currents are most likely due to different channels because $\mathrm{I}_{\mathrm{Cl}-1}$ has a linear instantaneous


current-voltage relationship with an activation range at positive potentials and $I_{\rm Cl-2}$ has a strongly outwardly rectifying current-voltage relationship with activation at negative potentials.

Does adenophostin activate SOCCs without depleting stores?. If we assume that $I_{\text{Cl-1}}$ is a reliable indicator of Ca²⁺ release from stores (see below) and that I_{Cl-2} is a reliable indicator of Ca²⁺ influx, these data suggest the possibility that adenophostin-A may be capable of activating Ca²⁺ influx through SOCCs without depleting Ca²⁺ stores. If this is true, this is very exciting because it suggests that the signal transmitted from Ca²⁺ stores to SOCCs may be an adenophostin-A-like compound. At the present time, the nature of the signaling pathway between stores and SOCCs remains completely unknown (8). One hypothesis for the coupling mechanism states that when store Ca²⁺ falls, the store releases a diffusible messenger. However, experiments supporting the existence of a diffusible messenger remain controversial (22-25). The alternative hypothesis, proposed by Berridge et al. (8, 26) hypothesizes that a "Ca²⁺-sensor" in the membrane of the Ca²⁺ store directly couples to the SOCC and opens it. This conformational coupling hypothesis is attractive because it is analogous to the dihydropyridine receptor-ryanodine receptor coupling that occurs in skeletal muscle excitation-contraction coupling, but there remains little direct evidence either in support of or against this hypothesis

The idea that adenophostin-A may activate SOCCs without depleting Ca²⁺ stores is supported by the finding that adenophostin-A stimulates a larger I_{Cl-2}, whereas stimulation of $I_{\rm Cl\text{--}1}$ is >20-fold less compared with IP_3 (compare Figs. 9B and 2C). If $I_{\text{Cl-1}}$ is an accurate indicator of Ca^{2+} released from stores, then the data suggest that adenophostin-A can activate SOCCs without depleting Ca2+ stores to the extent that is necessary for IP₃ to activate SOCCs. Furthermore, in cells in which I_{Cl-2} is activated but I_{Cl-1} is stimulated only marginally by adenophostin-A, IP₃ is capable of stimulating a large I_{Cl-1} by releasing Ca^{2+} from stores. Thus, it is clear that Ca²⁺ stores are not completely depleted of Ca²⁺ even though $I_{\operatorname{Cl-2}}$ has developed significantly. In contrast, a second injection of IP_3 at any time after I_{Cl-2} has begun to develop in response to an initial IP3 injection is ineffective in stimulating additional Ca^{2+} release (as measured by $I_{\text{Cl-1}}$). Thus, it seems that IP3-sensitive stores must be more fully emptied of Ca²⁺ in response to IP₃ than in response to adenophostin-A to initiate Ca2+ influx.

 I_{Cl-1} may be an imperfect indicator of store-released Ca²⁺. There are two possible explanations of these results. The first explantation, as suggested above, is that adenophostin-A has a direct effect on SOCCs. This interpretation should be accepted with caution, however, because we have never observed the development of I_{Cl-2} in the complete absence of stimulation of $I_{\text{Cl-1}}$. This observation could simply be explained if adenophostin-A has two sites of action, the IP₃ receptor and the SOCC, and the dose-response curves for the two sites overlap partially. However, another possibility is that I_{Cl-1} is an imperfect indicator of Ca²⁺ release from stores. For example, the response of the $I_{\text{Cl-1}}$ channel may depend on the rapidity with which Ca²⁺ is released from the store (different rates of release resulting in different local concentrations of cytosolic Ca²⁺) or possibly the temporal pattern of Ca²⁺ release from the store. Thus, if low concen-

Fig. 9. The effect of IP $_3$ on CI $^-$ currents after injection of adenophostin-A. A, Plot of (\bigcirc) I $_{\text{Cl-1}}$ and (\triangle) I $_{\text{Cl-2}}$ as a function of time. Adenophostin-A (10 nl of 1 μ M) was injected at the time indicated (*first arrow*) ([adenophostin-A] $_{\text{CALC}}$ = 10 nM). At \sim 30 min later (second arrow), 4.6 nl of 1 mM IP $_3$ was injected (calculated IP $_3$ concentration = 4.6 μ M). B, Another oocyte showing a different result. *Inset*, On an expanded scale, the increase in I $_{\text{Cl-1}}$ after adenophostin-A injection.

trations of adenophostin-A release $\mathrm{Ca^{2^+}}$ from stores slowly, it might not be revealed as an increase in $\mathrm{I_{Cl-1}}$. Alternatively, because adenophostin-A binds to the $\mathrm{IP_3}$ receptor with very high cooperativity (10, 12), it is possible that adenophostin-A stimulates a very rapid release of $\mathrm{Ca^{2^+}}$ from stores that is too fast to be detected by the $\mathrm{I_{Cl-1}}$ channel. In support of the idea that $\mathrm{I_{Cl-1}}$ may be an imperfect indicator of steady state cytosolic $\mathrm{Ca^{2^+}}$ concentration is the finding by Parker and Yao (27) that $\mathrm{Cl^-}$ current amplitude correlated better with the rate of rise in the $\mathrm{Ca^{2^+}}$ transient measured by Fluo-3 fluoresence than with the steady state cytosolic $\mathrm{Ca^{2^+}}$ level.

Functionally different IP₃-sensitive stores. An alternative explanation for the differential ability of adenophostin-A and IP₃ to stimulate $I_{\text{Cl-1}}$ and $I_{\text{Cl-2}}$ is that there are functionally different IP₃-sensitive Ca²⁺ stores and that only a subset are tightly coupled to SOCCs. There is evidence in

the literature that not all of the stores must be completely depleted of Ca²⁺ to stimulate capacitative Ca²⁺ entry through SOCCs. Montero et al. (28) suggested that there is a linear relationship between Ca2+ influx and the amount of Ca²⁺ in the store. However, there are suggestions that the relationship between "store Ca2+" and Ca2+ influx may be more complex. Mathes and Thompson (29) have shown that a ~60% reduction in store Ca²⁺ is sufficient to maximally activate Ca²⁺ influx in neuroblastoma cells. Furthermore, in X. laevis oocytes, it seems that there is no direct relationship between the level of store Ca2+ depletion and Ca2+ influx. Lupu-Meiri et al. (20) have shown that although acetylcholine or incubation of oocytes in zero-Ca²⁺ solution produce comparable reductions in cell Ca2+, only acetylcholine produces significant Ca2+ influx. Likewise, different inositol phosphates have differential ability to activate Ca2+ release

from stores and Ca^{2^+} influx (30). These and other data (31) suggest the possibility that there are discrete Ca^{2^+} stores in the cell and that only one subset of the stores is coupled to Ca^{2^+} influx. If this interpretation is true, it might suggest that low concentrations of adenophostin-A are capable of stimulating Ca^{2^+} release from a discrete Ca^{2^+} store that is more closely associated with SOCCs, whereas IP_3 may indiscriminately release Ca^{2^+} from all IP_3 -sensitive stores in X. laevis oocytes.

One attractive hypothesis is that the type-3 $\rm IP_3$ receptor is more tightly coupled to stores than the type-1 $\rm IP_3$ receptor and that adenophostin-A has a higher affinity for the type-3 receptor than for the type-1 receptor. In support of this suggestion is the observation that overexpression of the type-3 $\rm IP_3$ receptor in X. laevis oocytes increases capacitative $\rm Ca^{2+}$ entry and that this receptor is preferentially localized near the plasma membrane (32).

Another important difference that we have observed between adenophostin-A and IP3 is that low concentrations of IP₃ and IP₃ analogs produce oscillations in I_{Cl-1}, whereas adenophostin does not. Oscillations in Cl⁻ currents produced by IP₃ injection have been described by other investigators (33–36). The oscillations of I_{Cl-1} parallel the Ca^{2+} waves produced by injection of oocytes with low concentrations of IP₃ analogs (37, 38) and are probably related to the bellshaped Ca²⁺ dependence of the IP₃ receptor (39–41). Thus, as IP₃ releases Ca²⁺ from the store, the high concentration of cytosolic Ca²⁺ inhibits the action of IP₃. As the cytosolic Ca²⁺ is lowered by uptake into the endoplasmic reticulum by Ca²⁺-ATPases, the inhibition is relieved and IP₃ can act again to stimulate release (42). The lack of oscillations with low concentrations of adenophostin suggests that Ca²⁺ may not modulate the action of adenophostin-A as it modulates the effect of IP₃. An attractive hypothesis is that adenophostin-A may act on a subtype of IP3 receptor that is modulated in a different way by Ca²⁺ than is the type-1 receptor. In this regard, Mikoshiba et al. (43) recently showed that the type-1 and type-3 IP₃ receptors are regulated differently by Ca²⁺. Alternatively, the inactivation of the type-1 IP₃ receptor may depend on the agonist that activates it. If this is true, it suggests that inactivation may not be solely due to the increase by IP3 of the access of Ca2+ to an inhibitory binding site on the cytoplasmic surface of the IP₃ receptor (44).

Other interpretations. Another difference between adenophostin and IP3 that should be considered is that adenophostin may be much more metabolically stable than IP₃. Although the metabolic pathways that use adenophostin as substrate and the products of adenophostin metabolism have not been characterized, it is known that IP3 is relatively rapidly metabolized into other inositol phosphates that may have their own biological actions. Thus, the products of IP₃ metabolism could have complex effects that could explain the differences in responsiveness of $I_{\mathrm{Cl-1}}$ and $I_{\mathrm{Cl-2}}$ to adenophostin and IP₃. For example, it has been shown that inositol-3,4,5,6-tetrakisphosphate is capable of inhibiting Ca²⁺-activated Cl- channels in colonic and intestinal epithelial cells (45, 46). If inositol-3,4,5,6-tetrakisphosphate or other inositol phosphates were to have effects not shared by adenophostin-A on Cl⁻ channels, this could confound the interpretation of the results described here. One possible scenario would be that a metabolite of IP_3 selectively inhibits the I_{Cl-2} channel because of the time required for metabolic conversion of the injected $\mathrm{IP}_3.$ The strongest argument against such a mechanism is shown in Fig. 9. This hypothesis would predict that IP_3 injection after $\mathrm{I}_{\mathrm{Cl}\text{-}2}$ had developed in response to adenophostin injection should produce an inhibition of the current. However, although the IP_3 injection does sometimes produce a very small and transient inhibition of $\mathrm{I}_{\mathrm{Cl}\text{-}2},$ this negative effect is too small and too short-lived to explain the differences we have described in the responses to IP_3 and adenophostin-A. Furthermore, we see a similar difference between adenophostin-A and two slowly metabolized analogs of $\mathrm{IP}_3,$ 2,3-dideoxy IP_3 and 2-deoxy-3-fluoro $\mathrm{IP}_3.$

Another consequence of the difference in the metabolic stability of adenophostin-A and $\rm IP_3$ might be spatial differences in the spread of the drugs through the cell after injection. For example, $\rm IP_3$ may not diffuse throughout the cell before it is metabolized, whereas adenophostin-A might be able to diffuse a longer distance before it is inactivated. If so, compared with $\rm IP_3$, adenophostin-A might deplete a larger fraction of the stores, which would activate more SOCCs, and activate more $\rm I_{Cl-2}$. Although this could theoretically explain why adenophostin-A activates less $\rm I_{Cl-1}$ and more $\rm I_{Cl-2}$ than does $\rm IP_3$, it is does not explain why $\rm IP_3$ releases $\rm Ca^{2^+}$ from stores that activate $\rm I_{Cl-1}$ and adenophostin-A does not (unless one assumes that adenophostin-A-sensitive stores are located farther from the membrane than $\rm IP_3$ -sensitive stores).

Summary. The results provide interesting suggestions regarding the possible mechanisms of action of adenophostin-A. However, distinguishing between the possibilities discussed above will require imaging changes in store Ca²⁺ and cytosolic Ca²⁺ using fluorescent or luminescent Ca²⁺ probes and correlating these changes with the currents we have recorded here. These studies are currently in progress.

Acknowledgments

We would like to thank Drs. M. Takahashi, S. Takahashi, and K. Tanzawa (Sankyo, Tokyo, Japan) for their generous gift of adenophostin-A. We would also like to thank Dr. Lynne Quarmby for helpful discussions and comments on the manuscript and Amber Rinderknecht for technical assistance.

References

- Rhee, S. G., and K. D. Choi. Multiple forms of phopholipase C isozymes and their activation mechanisms, in Advances in Second Messenger and Phosphoprotein Research (J. W. Putney, ed.). Raven Press, New York, 35–61 (1992).
- 2. Berridge, M. J., and R. F. Irvine. Inositol phosphates and cell signaling. *Nature (Lond.)* **341**:197–205 (1989).
- Rana, R. S., and L. E. Hokin. Role of phosphoinositides in transmembrane signaling. *Physiol. Rev.* 70:115–164 (1990).
- Berridge, M. J. Inositol trisphosphate and calcium signaling. Nature (Lond.) 361:315–325 (1993).
- Fasolato, C., B. Innocenti, and T. Pozzan. Receptor-activated Ca²⁺ influx: how many mechanisms for how many channels? *Trends. Pharmacol. Sci.* 15:77–83 (1994).
- Meldolesi, J., E. Clementi, C. Fasolato, D. Zacchetti, and T. Pozzan. Ca²⁺ influx following receptor activation. *Trends. Pharmacol. Sci.* 12:289–292 (1991).
- Putney, J., Jr. Inositol phosphates and calcium entry. Adv. Second Messenger Phosphoprotein Res. 26:143–160 (1992).
- 8. Berridge, M. J. Capacitative calcium entry. Biochem. J. 312:1-11 (1995).
- Putney, J. W. Capacitative calcium entry revisited. Cell Calcium 11:611–624 (1990)
- Takahashi, M., K. Tanzawa, and S. Takahashi. Adenophostins, newly discovered metabolites of *Penicillium brevicompactum*, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* 269:369– 372 (1994).
- 11. Wilcox, R. A., C. Erneux, W. U. Primrose, R. Gigg, and S. R. Nahorski. 2-Hydroxyethyl-a-D-glucopyranoside-2,3',4'-trisphosphate, a novel, metabolically resistant, adenophostin A and myo-inositol-1,4,5-trisphosphate

- analogue, potently interacts with the myo-inositol-1,4,5-trisphosphate receptor. $Mol.\ Pharmacol.\ 47:1204-1211,\ 1995.$
- 12. Hirota, J., T. Michikawa, A. Miyawaki, M. Takahashi, K. Tanzawa, I. Okura, T. Furuichi, and K. Mikoshiba. Adenophostin-mediated quantal Ca²⁺ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett. 368:248–252, 1995.
- Dascal, N. The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22:317–387, 1987.
- Lechleiter, J. D., and D. E. Clapham. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69:283–294, 1992.
- Hartzell, H. C. Activation of different Cl currents in Xenopus oocytes by Ca liberated from stores and by capacitative Ca influx. J. Gen. Physiol. 108: 157–175, 1996.
- Snyder, P. M., K. Krause, and M. J. Welsh. Inositol triphosphate isomers, but not inositol 1,3,4,5-tetrakisphosphate, induce calcium influx in *Xeno*pus laevis oocytes. J. Biol. Chem. 263:11048–11051, 1988.
- Parker, I., and R. Miledi. Inositol trisphosphate activates a voltagedependent calcium influx in *Xenopus* oocytes. *Proc. R. Soc. Lond.* 231:27– 36, 1987.
- DeLisle, S., D. Pittet, B. V. L. Potter, P. D. Lew, and M. J. Welsh. InsP3 and Ins(1,3,4,5)P4 act in synergy to stimulate influx of extracellular Ca²⁺ in *Xenopus* oocytes. *Am. J. Physiol.* C1456–C1463, 1992.
- Petersen, C. C. H., and M. J. Berridge. The regulation of capacitative calcium entry by calcium and protein kinase C in *Xenopus* oocytes. *J. Biol. Chem.* 269:32246–32253, 1994.
- Lupu-Meiri, M., A. Beit-Or, S. B. Christensen, and Y. Oron. Calcium entry in *Xenopus* oocytes: effects of inositol trisphosphate, thapsigargin and DMSO. *Cell Calcium* 14:101–110, 1993.
- Parker, I., and R. Miledi. Nonlinearity and facilitation in phosphoinositide signaling studied by the use of caged inositol trisphosphate in *Xenopus* oocytes. J. Neurosci. 9:4068–4077, 1989.
- Parekh, A. B., H. Terlau, and W. Stuhmer. Depletion of InsP3 stores activates a Ca and K current by means of a phosphatase and a diffusible messenger. *Nature (Lond.)* 364:814–818, 1993.
- Randriamampita, C., and R. Y. Tsien. Emptying of intracellular Ca stores releases a novel small messenger that stimulates Ca influx. *Nature (Lond.)* 364:809–814, 1993.
- Thomas, D., H. Y. Kim, and M. R. Hanley. Regulation of inositol trisphosphate-induced membrane currents in *Xenopus* oocytes by a Jurkat cell calcium influx factor. *Biochem. J.* 318:649–656, 1996.
- Gilon, P., G. S. J. Bird, X. Bian, J. L. Yakel, and J. W. Putney. The Ca mobilizing actions of Jurkat extracts on mammalian cells and *Xenopus laevis* oocytes. *J. Biol. Chem.* 270:8050–8055, 1995.
- Petersen, C. C. H., and M. J. Berridge. Capacitative calcium entry is colocalised with calcium release in *Xenopus* oocytes: evidence against a highly diffusible calcium influx factor. *Pflueg. Arch. Eur. J. Physiol.* 431: 286–292, 1996.
- Parker, I., and Y. Yao. Relation between intracellular Ca²⁺ signals and Ca²⁺-activated Cl⁻ current in *Xenopus* oocytes. *Cell Calcium* 15:276–288, 1994
- Montero, M., J. Alvarez, and J. Garcia-Sancho. Agonist-induced Ca²⁺ influx in human neutrophils is secondary to the emptying of intracellular calcium stores. *Biochem. J.* 277:73–79, 1991.
- Mathes, C., and S. T. Thompson. The relationship between depletion of intracellular Ca stores and activation of Ca current by muscarinic receptors in neuroblastoma cells. J. Gen. Physiol. 106:975–993, 1995.

- Lupu-Meiri, M., D. Lipinsky, S. Ozaki, Y. Watanabe, and Y. Oron. Independent external calcium entry and cellular calcium mobilization in Xenopus oocytes. Cell Calcium 16:20–24, 1994.
- Shapira, H., M. Lupu-Meiri, D. Lipinisky, and Y. Oron. Agonist-evoked calcium efflux from a functionally discrete compartment in *Xenopus* oocytes. *Cell Calcium* 19:201–210, 1996.
- 32. DeLisle, S., O. Blondel, F. J. Longo, W. E. Schnabel, G. I. Bell, and M. J. Welsh. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca²⁺ signal of Xenopus oocytes. Am. J. Physiol. 270:C1255–C1261, 1996.
- Berridge, M. J. Inositol triphosphate-induced membrane potential oscillations in Xenopus oocytes. J. Physiol. 403:589–599, 1988.
- Parker, I., and R. Miledi. Changes in intracellular calcium and in membrane currents evoked by injection of inositol trisphosphate into Xenopus oocytes. Proc. R. Soc. Lond. 228:307–315, 1986.
- Oron, Y., N. Dascal, E. Nadler, and M. Lupu. Inositol 1,4,5-trisphosphate mimics muscarinic response in *Xenopus* oocytes. *Nature (Lond.)* 313:141– 143, 1985.
- DeLisle, S., G. W. Mayr, and M. J. Welsh. Inositol phosphate structural requisites for Ca²⁺ influx. Am. J. Physiol. 268:C1485-C1491, 1995.
- Lechleiter, J., S. Girard, E. Peralta, and D. Clapham. Sprial calcium wave propagation and annihilation in *Xenopus laevis* oocytes. *Science (Washington D. C.)* 252:123–126, 1991.
- Parker, I., and Y. Yao. Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc. R. Soc. Lond. 246:269–274, 1991.
- 39. Iino, M. Biphasic Ca²⁺-dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig *Taenia caeci. J. Gen. Physiol.* **95**:1103–1122, 1990.
- Bezprozvanny, I., J. Watras, and B. E. Ehrlich. Bell-shaped calciumresponse curves of Ins(1,4,5)P3 and calcium-gated channels from endoplasmic reticulum of cerebellum. *Nature (Lond.)* 351:751-754, 1991.
- Finch, E. A., T. J. Turner, and S. M. Goldin. Calcium as a co-agonist of inositol 1,4,5-trisphosphate-induced calcium release. *Science (Washington D. C.)* 252:443–446, 1991.
- Atri, A., J. Amundson, D. Clapham, and J. Sneyd. A single-pool model for intracellular calcium oscillations and waves in the *Xenopus* oocyte. *Bio*phys. J. 65:1727–1739, 1993.
- 43. Yoneshima, H., Miyawaki, A., Michikawa, T., Furuichi, T., and K. Mikoshiba. Ca²⁺ differentially regulates the ligand affinity states of type-1 and type-3 inositol 1,4,5-trisphosphate receptors. *Biophys. J.*, in press.
- Ehrlich, B. E. Functional properties of intracellular calcium-release channels. Curr. Opin. Neurobiol. 5:304–309, 1995.

- Xie, W., M. A. Kaetzel, K. S. Bruzik, J. R. Dedman, S. B. Shears, and D. J. Nelson. Inositol 3,4,5,6-tetrakisphosphate inhibits the calmodulindependent protein kinase II-activated chloride conductance in T84 colonic epithelial cells. J. Biol. Chem. 271:14092–14097, 1996.
- 1smailov, I. I., C. M. Fuller, B. K. Berdiev, V. G. Shlyonsky, D. J. Benos, and K. E. Barrett. A biologic function for an 'orphan' messenger: p-myoinositol 3,4,5,6-tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. *Proc. Natl. Acad. Sci. USA* 93:10505–10509, 1996

Send reprint requests to: Dr. H. Criss Hartzell, Department of Anatomy and Cell Biology, Room 333, 1648 Pierce Drive, Emory University School of Medicine, Atlanta, GA 30322-3030. E-mail: criss@anatomy.emory.edu